Tartu Tamme Gümnaasium

Ainepassid

Ainepassid

Ainepass: Trigonomeetria II.

Õppeaasta: 2024/2025
Valdkond: Matemaatika ja infotehnoloogia
Periood: 2, 3
Aine: Lai matemaatika
Nimetus: Trigonomeetria II.
Õpetaja: Karin Tepaskent
Klass: 10KU
Staatus: Kohustuslik kursus
Osalejate kriteeriumid:

Eelduskursused: 

  • matemaatika laia III kursuse osa trigonomeetria I.
Maht:

19 auditoorset tundi – üks tund 70 min

Eesmärgid:

Matemaatika õpetusega taotletakse, et õpilasest kujuneks välja vastutustundlik ja ennastjuhtiv õppija, kes:

  1. suudab kasutada matemaatikale omast keelt, sümboleid ning meetodeid erinevaid ülesandeid lahendades;
  2. väljendab oma mõtet selgelt, lühidalt ja täpselt ning formaliseerib tavakeeles infot ning vastupidi;
  3. koostab ja rakendab sobivaid matemaatilisi mudeleid;
  4. leiab probleemile matemaatilise lahendustee ja matemaatika vahendid selle lahendamiseks;
  5. rakendab matemaatikateadmisi igapäevaelus.
Õpitulemused:

Kursuse lõpus õpilane:

  1. teisendab kraadimõõdus antud nurga radiaanmõõdus olevaks nurgaks ja vastupidi;
  2. arvutab ringjoone kaare kui ringjoone osa pikkuse ning ringi sektori kui ringi osa pindala;
  3. defineerib mis tahes nurga siinuse, koosinuse ja tangensi; tuletab ning teab siinuse, koosinuse ja tangensi vahelisi seoseid;
  4. tuletab nurkade 0°, 30°, 45°, 60°, 90°, 180°, 270°, 360° siinuse, koosinuse ja tangensi täpsed väärtused; rakendab taandamisvalemeid, negatiivse ja täispöördest suurema nurga valemeid;
  5. kasutab digivahendeid trigonomeetriliste funktsioonide väärtuste ning nende väärtuste järgi nurga suuruse leidmisel;
  6. tuletab kahe nurga summa ja vahe valemid ning kahekordse nurga siinuse, koosinuse ja tangensi valemid;
  7. teisendab lihtsamaid trigonomeetrilisi avaldisi valemikogu abil;
  8. tõestab siinus- ja koosinusteoreemi, lahendab mistahes kolmnurga ning arvutab selle pindala;
  9. tunneb ära ainealased ja reaalelulised probleemid, mis on lahendatavad kolmnurga ja ringi kohta õpitut rakendades. Tõlgib need matemaatika keelde, lahendab matemaatiliselt ning tõlgendab ja esitleb saadud tulemusi.
Sisu lühikirjeldus (ka iseseisev töö):
  • Nurga mõiste üldistamine.
  • Nurga kraadi- ja radiaanmõõt.
  • Mis tahes nurga trigonomeetrilised funktsioonid. Nurkade 0°, 30°, 45°, 60°, 90°, 180°, 270°, 360° siinuse, koosinuse ja tangensi täpsed väärtused.
  • Ühe ja sama nurga trigonomeetriliste funktsioonide vahelised seosed.
  • Taandamisvalemid.  
  • Negatiivse ja täispöördest suurema nurga trigonomeetrilised funktsioonid.
  • Kahe nurga summa ja vahe trigonomeetrilised funktsioonid.
  • Kahekordse nurga trigonomeetrilised funktsioonid.
  • Trigonomeetrilised avaldised.
  • Kolmnurga pindala valemid.
  • Siinus- ja koosinusteoreem.
  • Kolmnurga lahendamine.
  • Ainealased ja reaalelulised probleemid, mis on lahendatavad kolmnurga ja ringi kohta õpitut rakendades. 

Iseseisev töö: Õpilane peab tegema ära Stuudiumis märgitud kodused tööd ning õppima selgeks kõik valemid ja mõisted, mida tunnis käsitletud on, ka siis, kui seda pole Stuudiumis eraldi rõhutatud. Tunnist puudunud õpilane teeb iseseisvalt selgeks enne järgnevat tundi  eelneva tunni materjalid.  

Hindamine:

Kaks kontrolltööd (eristav hindamine).

Kontrolltööd on kursuse algul kokkulepitud ning lisatud esimes tunni kirjeldusse ja kontrolltööde graafikusse.
Kontrolltööde puhul lähtutakse matemaatikateadmiste üldisest seotusest, seega võib töös küsida lisaks antud ainepassis kirjeldatud sisule ja õpiväljunditele ka eelnevatel kursustel õpitud elemente.

Kontrolltöö hindamisel lähtutakse järgnevatest hindepiiridest:

  • 5 -> 90-100%,
  • 4 -> 75-89%,
  • 3 -> 50-74%,
  • 2 -> 20-49%,
  • 1 -> 0-19% (sh tegemata töö).

Hindepiirid võivad mõnel tööl olla madalamad, kuid neid kindlasti ei tõsteta. Olümpiaadist või muust ainealastest võistlustest osavõtmisel võib õpetaja õpilase vabastada kontrolltöö tegemisest ja hinnata tööd hindega „5“.

Tunnikontrollid (mitteeristav hindamine (A või MA)), peavad olema sooritatud 50% ulatuses ehk hindele A). Tunnikontrollide või teiste jooksvate tööde hindepiirid võivad erineda kontrolltöö hindepiiridest.

Lõpptulemuse kujunemine (ka kooliastme hinne):

Kursuse hinne kujuneb:

Kaks kontrolltööd, kokku 100p. Kontrolltöö võib sisaldada kuni 5p testi.

  • Mõlemad kontrolltööd peavad olema sooritatud vähemalt 50% ulatuses hindele "3". Kui eelnev tingimus on täitmata, on kursuse lõpphinne 2.
  • Kui õpilane jääb töö kirjutamisel vahele kõrvalise abi kasutamisega, siis hinnatakse töö hindega 1, see töö järelvastamisele ei kuulu.
  • Kui üks kontrolltöödest on esitamata, tegemata või hinnatud hindega 1, siis on kursusehinne 1.

Tunnikontrollide ja muude jooksvate tööde hinne on õpilasele suuniseks õppimisel ja lõpphindamisel arvesse ei lähe.

NB! Stuudiumi arvutatud keskmine hinne on aritmeetiline keskmine kõigist sisestatud hinnetest ning lõpphinde kujunemisel ei lähtuta sellest vaid ainepassist!

Kooliastme hinne kujuneb kõigi kohustuslike matemaatika kursuste hinnete aritmeetilise keskmise alusel.

Võlgnevuste likvideerimise võimalused:

Tunnikontrolltöid ja teisi jooksvaid töid järele teha ei saa.

Järeltööd on võimalik teha kontrolltööle, mis on kas tegemata või sooritatud hindele 1 või 2, kahe nädala jooksul pärast hinde Stuudiumisse sisestamist (Stuudiumis fikseeritakse kuupäev). 

Järeltööd ei ole võimalik teha sellisele tööle, mille puhul õpilane jäi vahele kõrvalise abi kasutamisega.

Järeltööd saab teha üldise järelvastamise ajal, registreerumisega Stuudiumis. Mõjuval põhjusel ja eelneval kokkuleppel on töö ajal puudumise korral võimalik teha eelnevale erandeid (näiteks sooritada töö enne määratud aega). Kui õpilane paneb end kirja järelevastamisele ja kohale ei saa mõjuval põhjusel tulla, siis tuleb sellest teavitada aineõpetajat ja järelevastamise õpetajat Tiiu Läänistet: tiiu.laaniste@tammegymnaasium.ee. Kui õpilane ei teavita puudumisest, siis enam uuesti sama tööd vastata ei saa! 

NB! Selleks, et saada luba järeltööle registreeruda, tuleb käia kohustuslikus individuaalses konsultatsioonis, registreerimisega Stuudiumis. Konsultatsiooni tulles on kaasas kontrolltöö korrektne vigade parandus koos analüüsiga vastavalt järgnevale juhendile: https://lingid.ee/vigadeparandus.

Kui õpilane saab mitterahuldava kursuse hinde, siis arutatakse lisavõimaluse andmist õppenõukogus. Selleks peab õpilane esitama õppejuhile vastava sooviavalduse. Kui soov rahuldatakse, siis õpilane saab sooritada kursuse arvestustöö, mille maht on terve kursus ja seda saab sooritada uue perioodi alguses järelvastamise ajal.

Õppematerjalid:

Kohustuslik:
 * Kaldmäe, Kontson, Matiisen&Pais. Gümnaasiumi lai matemaatika II. Trigonomeetria. Vektor tasandil. Joone võrrandid. Avita 2017, 2019

Soovituslik:
1) Lepmann, L. Lepmann, T. & Velsker, K. (2011). Matemaatika 10. klassile. Koolibri.
2) Lepmann, L. Lepmann, T. & Velsker, K. (2018). Matemaatika 10. klassile. Kitsas kursus. Koolibri.
3) Veelmaa, A. (2016). Matemaatika tööraamat gümnaasiumi lõpetajale I. Maurus
4) Veelmaa, A. (2020). Valmistu matemaatika riigieksamiks 2020. Maurus

Veebipõhised materjalid:
* Allar Veelmaa õppevideod gümnaasiumile (lingid jagab õpetaja jooksvalt Stuudiumi kaudu)
* Matemaatika riigieksami materjalid Innove kodulehelt https://www.innove.ee/eksamid-ja-testid/riigieksamid/riigieksamite-materjalid/  ja https://harno.ee/eksamid-testid-ja-uuringud/eksamid-testid-ja-lopudokumendid/riigieksamid#materjalid
* Kurvits, J. (2018). Digivaramu matemaatika materjalid. https://e-koolikott.ee/kogumik/20179-Digioppevaramu-matemaatika-materjalid

Kursuste ainepassidest moodustuvad Tartu Tamme Gümnaasiumi ainekavad.

Tagasivaade orkestri tegemistele

Tagasivaade rahvatantsijate tegemistele

Tagasivaade segakoori tegemistele