Ainepass: XI kursus: integraal, planimeetria
Õppeaasta: | 2024/2025 |
Valdkond: | Matemaatika ja infotehnoloogia |
Periood: | 1 |
Aine: | Lai matemaatika |
Nimetus: | XI kursus: integraal, planimeetria |
Õpetaja: | Mari-Liis Jaansalu |
Klass: | 12IT, 12TE |
Staatus: | Kohustuslik kursus |
Osalejate kriteeriumid: | Matemaatikaõppe järjepidevuse tõttu seostatakse pidevalt tulevaste kursuste sisu eelnevatega, seetõttu on üsna tihti vaja kasutada varemõpitud teadmisi ja oskuseid. |
Maht: | 19-20 auditoorset õppetundi. |
Eesmärgid: | Õpilane tunneb integraali mõistet ning oskab seda kasutada rakenduslikes ülesannetes. Tutvutakse mõningate integreerimise võtetega. Korratakse varasemalt õpitud planimeetriat, rakendusülesanded veidi raskemad. Gümnaasiumi matemaatikaõpetusega taotletakse üldiselt, et õpilane:
|
Õpitulemused: | Õpilane: 1) selgitab algfunktsiooni mõistet ning leiab lihtsamate funktsioonide määramata integraale põhiintegraalide tabeli ja integraali omaduste järgi; |
Sisu lühikirjeldus (ka iseseisev töö): | Algfunktsiooni ja määramata integraali mõiste. Integraali omadused. Kõvertrapets, selle pindala piirväärtusena. Määratud integraal, NewtoniLeibnizi valem. Integraali kasutamine tasandilise kujundi pindala, pöördkeha ruumala ning töö arvutamisel. Kolmnurk, selle sise ja välisnurk, kolmnurga sisenurga poolitaja, selle omadus. Kolmnurga sise ja ümberringjoon. Kolmnurga mediaan, mediaanide omadus. Kolmnurga kesklõik, selle omadus. Meetrilised seosed täisnurkses kolmnurgas. Hulknurk, selle liigid. Kumera hulknurga sisenurkade summa. Hulknurkade sarnasus. Sarnaste hulknurkade ümbermõõtude suhe ja pindalade suhe. Hulknurga sise ja ümberringjoon. Rööpkülik, selle eriliigid ja omadused. Trapets, selle liigid. Trapetsi kesklõik, selle omadused. Kesknurk ja piirdenurk. Thalese teoreem. Ringjoone lõikaja ning puutuja. Kõõl ja puutujahulknurk. Kolmnurga pindala. Rakenduslikud geomeetriaülesanded. Iseseisvad tööd tekivad kursusel jooksvalt (näiteks kodused tööd). Nii õpilane, kes on tunnist puudunud, kui ka õpilane, kes on tunnis kohal olnud, peavad enne järgnevat tundi tegema omale selgeks eelneva tunni materjalid, olenemata sellest, kas seda klassis eraldi rõhutatakse või Stuudiumisse kodutööna kirja pannakse. Vastavat abi ning lisamaterjale võib küsida kaasõpilastelt või õpetajalt nii suuliselt kui ka kirjalikult. |
Hindamine: | Õpet kavandades ning sellest tulenevalt ka hinnates arvestatakse mõtlemise hierarhilisi tasandeid: I faktide, protseduuride ja mõistete teadmine: meenutamine, äratundmine, info leidmine, arvutamine, mõõtmine, klassifitseerimine/järjestamine, tüüpülesannete lahendamine; Kontrolltööde puhul lähtutakse matemaatikateadmiste üldisest seotusest, seega võib töös küsida lisaks antud ainepassis kirjeldatud sisule ja õpiväljunditele ka eelnevatel kursustel õpitud elemente. Kontrolltöö koostamisel on arvestatud, et õpilane saab hinde 3, kui ta oskab matemaatikat I tasemel, hinde 4, kui ta oskab matemaatikat II tasemel ja hinde 5, kui ta oskab matemaatikat III tasemel. Lähtutakse järgnevatest hindepiiridest: 5 -> 90-100%, 4 -> 75-89%, 3 -> 50-74%, 2 -> 20-49%, 1 -> 0-19% (ehk tegemata töö). Hindepiirid võivad mõnel tööl olla madalamad, kuid neid kindlasti ei tõsteta. Jooksvate töödena võib hinnata tunnikontrolle, koduseid töid või muid õppeülesandeid kahel erineval moel: hindeliselt (5, 4, 3, 2, 1) või arvestuslikult (arvestatud A ja mittearvestatud MA). |
Lõpptulemuse kujunemine (ka kooliastme hinne): | Kursuse jooksul on kaks kirjalikku kontrolltööd (a’ 45-75 min), esimene kaaluga 0,45 lõpphindest ja teine kaaluga 0,55. Jooksvate ülesannete hinne (ning tööga kaasa saadud kommentaarid) on õpilasele suuniseks õppimisel ja lõpphindamisel arvesse ei lähe. [Näiteks: kui kontrolltööd on 5 ja 4, siis on kursusehinne 4 ning see kujuneb järgnevalt: 5∙0,45+4∙0,55=4,45≈4].
NB! Stuudiumi arvutatud keskmine hinne on aritmeetiline keskmine kõigist sisestatud hinnetest ning lõpphinde kujunemisel ei lähtuta sellest, vaid ainepassist. |
Võlgnevuste likvideerimise võimalused: | Järeltööd on võimalik teha kontrolltööle, mis on kas tegemata või sooritatud hinnetele 1 või 2. Järeltööd ei ole võimalik teha sellisele tööle, mille puhul õpilane jäi vahele kõrvalise abi kasutamisega, või sellisele tööle, mille puhul oli õpilane kohal kuid tööd ei esitanud. (Tartu Tamme Gümnaasiumi õppekava § 13 (4)) Kui kursuse lõpus selgub, et mõlemad kontrolltööd on puudulikud, siis on ainuvõimalik teha arvestustöö kogu kursuse materjalide peale. Järeltööd saab teha üldise järelvastamise ajal, registreerumisega Stuudiumis. Järelvastamiseks on õpilasel alati kaks järgnevat vastamise võimalust, peale hinde teada saamist. Hiljem tööd uuesti teha ei saa. Mõjuval põhjusel ja eelneval kokkuleppel on töö ajal puudumise korral võimalik teha eelnevale erandeid (näiteks sooritada töö enne määratud aega). Selleks, et saada luba järeltööle registreeruda, tuleb õpetajale hiljemalt kaks tööpäeva enne vastamist esitada korrektne vigade parandus koos analüüsiga vastavalt järgnevale juhendile: https://goo.gl/XZRHgJ Jooksvaid töid järele vastata ei ole vaja. |
Õppematerjalid: | L. Lepmann, T. Lepmann, K. Velsker „Matemaatika XII klassile" |