Tartu Tamme Gümnaasium

Ainepassid

Ainepassid

Ainepass: Vektor tasandil. Joone võrrand

Õppeaasta:2021/2022
Valdkond:Matemaatika ja infotehnoloogia
Periood:3
Aine:Lai matemaatika
Nimetus:Vektor tasandil. Joone võrrand
Õpetaja:Leene Lotta Lüdimois
Klass:10KU, 10LO
Staatus:Kohustuslik kursus
Osalejate kriteeriumid:

Puuduvad.

Maht:

19 auditoorset tundi

Eesmärgid:

Õpilane kasutab matemaatilist keelt, väljendab oma mõtteid ja lahenduskäike selgelt ja täpselt, koostab ja rakendab sobivaid matemaatilisi mudeleid õpitulemuste omandamiseks.

Õpitulemused:

Kursuse lõpus õpilane:

1) selgitab mõisteid vektor, ühik-, null- ja vastandvektor, vektori koordinaadid, kahe vektori vaheline nurk;

2) liidab, lahutab ja korrutab vektoreid arvuga nii geomeetriliselt kui ka koordinaatkujul;

3) arvutab kahe vektori skalaarkorrutise ning rakendab vektoreid füüsikalise sisuga ülesannetes;

4) kasutab vektorite ristseisu ja kollineaarsuse tunnuseid;

5) lahendab kolmnurka vektorite abil;

6) leiab lõigu keskpunkti koordinaadid;

7) koostab sirge võrrandi (kui sirge on määratud punkti ja sihivektoriga, punkti ja tõusuga, tõusu ja algordinaadiga, kahe punktiga) ning teisendab selle üldvõrrandiks; määrab kahe sirge vastastikuse asendi tasandil, lõikuvate sirgete korral leiab sirgete lõikepunkti ja nurga sirgete vahel;

8) koostab hüperbooli, parabooli ja ringjoone võrrandi; joonestab ainekavas esitatud jooni nende võrrandite järgi; leiab kahe joone lõikepunktid.

Sisu lühikirjeldus (ka iseseisev töö):

Kahe punkti vaheline kaugus. Vektori mõiste ja tähistamine. Nullvektor, ühikvektor, vastandvektor, seotud vektor, vabavektor. Vektorite võrdsus. Vektori koordinaadid. Vektori pikkus. Vektorite liitmine ja lahutamine. Vektori korrutamine arvuga. Lõigu keskpunkti koordinaadid. Kahe vektori vaheline nurk. Vektorite kollineaarsus. Kahe vektori skalaarkorrutis, selle rakendusi, vektorite ristseis. Kolmnurkade lahendamine vektorite abil.

Sirge võrrand. Sirge üldvõrrand. Kahe sirge vastastikused asendid tasandil. Nurk kahe sirge vahel. Ringjoone võrrand. Parabool y = ax^2 + bx + c ja hüperbool y = a/x. Joone võrrandi mõiste. Kahe joone lõikepunkt.

Hindamine:

Tööde hindamisel lähtutakse järgnevatest hindepiiridest:
5 – 90%-100%, 4 – 75%-89%, 3 – 50%-74%, 2 – 20%-49%, 1 – 0%-19%

Lõpptulemuse kujunemine (ka kooliastme hinne):

Hindamine toimub kursuse kahe kontrolltöö (ja kodutööde esitamise eest teenitud lisapunktide) põhjal. Kontrolltöö peab olema sooritatud positiivsele hindele. Hindamine toimub tööde hinnete põhjal.

Kooliastmehinne kujuneb kõigi kohustuslike matemaatika kursuste hinnete aritmeetilise keskmise alusel.

Võlgnevuste likvideerimise võimalused:

Hindeid ja võlgnevusi saab õpilane likvideerida järelevastamise tunni ajal, üldjuhul 10. päeva jooksul, pärast hinde saamist. Ebaõnnestunud tööd saab uuesti sooritada vaid korra. 

Kui õpilane saab mitterahuldava kursuse hinde, siis arutatakse lisavõimaluse andmist õppenõukogus.
Selleks peab õpilane esitama õppejuhile vastava sooviavalduse. Kui soov rahuldatakse, siis õpilane saab sooritada kursuse arvestustöö, mille maht on terve kursus ja seda saab sooritada uue perioodi alguses järelvastamise ajal.

Õppematerjalid:

Lepmann, L jt Matemaatika X klassile, Koolibri 2013;
opiq.ee keskkond

Kursuste ainepassidest moodustuvad Tartu Tamme Gümnaasiumi ainekavad.