Ainepass: II kursus: Võrrandid ja võrrandisüsteemid
Õppeaasta: | 2025/2026 |
Valdkond: | Matemaatika ja infotehnoloogia |
Periood: | 1 |
Aine: | Lai matemaatika |
Nimetus: | II kursus: Võrrandid ja võrrandisüsteemid |
Õpetaja: | Nele Mäemuru |
Klass: | 10IT, 10KU, 10TE |
Staatus: | Kohustuslik kursus |
Osalejate kriteeriumid: | Matemaatikaõppe järjepidevuse tõttu seostatakse pidevalt tulevaste kursuste sisu eelnevatega, seetõttu on üsna tihti vaja kasutada varemõpitud teadmisi ja oskuseid. |
Maht: | 19×70 min |
Eesmärgid: | Õpilane kasutab matemaatilist keelt, väljendab oma mõtteid ja lahenduskäike selgelt ja täpselt, koostab ja rakendab sobivaid matemaatilisi mudeleid õpitulemuste omandamiseks. |
Õpitulemused: | Õpilane: 1) selgitab võrduse, samasuse ja võrrandi, võrrandi lahendi, võrrandi- ja võrratusesüsteemi lahendi ning lahendihulga mõistet; 2) selgitab võrrandite ning nende süsteemide lahendamisel rakendatavaid samasusteisendusi; 3) lahendab ühe tundmatuga lineaar-, ruut-, murd- ja lihtsamaid juurvõrrandeid (kaks juurt) ning nendeks taanduvaid võrrandeid; 4) lahendab lihtsamaid üht absoluutväärtust sisaldavaid võrrandeid; 5) lahendab võrrandisüsteeme; 6) tunneb ära õpitud võrrandite/võrrandisüsteemide abil lahenduvad reaalelulised/teaduslikud probleemid; 7) leiab või koostab sobiva võrrandi/võrrandisüsteemi probleemi lahendamiseks; 8) lahendab ainealase või reaalelulise probleemi võrrandite ja/või võrrandisüsteemide abil ning tõlgendab ja esitleb saadud tulemust. |
Sisu lühikirjeldus (ka iseseisev töö): | Võrdus, võrrand, samasus. Võrrandite samaväärsus, samaväärsusteisendused. Lineaar, ruut, murd ja juurvõrrandid (kuni kaks juurt) ning nendeks taanduvad võrrandid. Arvu absoluutväärtus. Üht absoluutväärtust sisaldav võrrand. Võrrandisüsteemid. Kahe ja kolmerealine determinant. Tekstülesanded. Iseseisvad tööd tekivad kursusel jooksvalt (näiteks kodused tööd). Nii õpilane, kes on tunnist puudunud, kui ka õpilane, kes on tunnis kohal olnud, peavad enne järgnevat tundi tegema omale selgeks eelneva tunni materjalid, olenemata sellest, kas seda klassis eraldi rõhutatakse või Stuudiumisse kodutööna kirja pannakse. Vastavat abi ning lisamaterjale võib küsida kaasõpilastelt või õpetajalt nii suuliselt kui ka kirjalikult. |
Hindamine: | Kontrolltööde hindamisel lähtutakse järgnevatest hindepiiridest: 5 -> 90-100%, 4 -> 75-89%, 3 -> 50-74%, 2 -> 20-49%, 1 -> 0-19% (sh tegemata töö). Hindepiirid võivad mõnel tööl olla madalamad, kuid neid kindlasti ei tõsteta. Olümpiaadist või muust ainealastest võistlustest osavõtmisel võib õpetaja õpilase vabastada kontrolltöö tegemisest ja hinnata tööd hindega „5“. Jooksvate töödena võib hinnata tunnikontrolle, koduseid töid või muid õppeülesandeid hindeliselt (5, 4, 3, 2, 1) või arvestuslikult (arvestatud A ja mittearvestatud MA). Jooksvate tööde hindepiirid võivad erineda kontrolltöö hindepiiridest. |
Lõpptulemuse kujunemine (ka kooliastme hinne): | Kursuse jooksul on kaks kirjalikku kontrolltööd (a’ 45-70 min), esimene kaaluga 0,45 lõpphindest ja teine kaaluga 0,55. Mõlemad kontrolltööd peavad olema sooritatud vähemalt hindele 3. Kui eelnev tingimus on täitmata, on kursuse lõpphinne 2 või 1 (kui töö on sooritamata). Jooksvate tööde hinded ei mõjuta lõpptulemuste kujunemist! Kui õpilane jääb töö kirjutamisel vahele kõrvalise abi kasutamisega, siis hinnatakse tööd hindega 1, see töö järelevastamisele ei kuulu, see omakorda tähendab, et kursuse lõpphinne on 1. NB! Stuudiumi arvutatud keskmine hinne on aritmeetiline keskmine kõigist sisestatud hinnetest ning lõpphinde kujunemisel ei lähtuta sellest vaid ainepassist! Kooliastme hinne kujuneb kõigi kohustuslike matemaatika kursuste hinnete aritmeetilise keskmise alusel. |
Võlgnevuste likvideerimise võimalused: | Jooksvaid töid järele teha ei saa. Järeltööd on võimalik teha kontrolltööle, mis on kas tegemata või sooritatud hindele 1 või 2, kahe nädala jooksul pärast hinde Stuudiumisse sisestamist (Stuudiumis fikseeritakse kuupäev). Järeltööd ei ole võimalik teha sellisele tööle, mille puhul õpilane jäi vahele kõrvalise abi kasutamisega. Järeltööd saab teha üldise järelvastamise ajal, registreerumisega Stuudiumis. Mõjuval põhjusel ja eelneval kokkuleppel on töö ajal puudumise korral võimalik teha eelnevale erandeid (näiteks sooritada töö enne määratud aega). Kui õpilane paneb end kirja järelevastamisele ja kohale ei saa mõjuval põhjusel tulla, siis tuleb sellest teavitada aineõpetajat ja järelevastamise õpetajat Tiiu Läänistet: tiiu.laaniste@tammegymnaasium.ee. Kui õpilane ei teavita puudumisest, siis enam uuesti sama tööd vastata ei saa! NB! Selleks, et saada luba järeltööle registreeruda, tuleb õpetajale Stuudiumis fikseeritud kuupäevaks esitada korrektne vigade parandus koos analüüsiga vastavalt järgnevale juhendile: https://goo.gl/XZRHgJ Kui õpilane saab mitterahuldava kursuse hinde, siis arutatakse lisavõimaluse andmist õppenõukogus. Selleks peab õpilane esitama õppejuhile vastava sooviavalduse. Kui soov rahuldatakse, siis õpilane saab sooritada kursuse arvestustöö, mille maht on terve kursus ja seda saab sooritada uue perioodi alguses järelvastamise ajal. |
Õppematerjalid: | Kohustuslik: 1) Lepmann, L jt Matemaatika XI klassile, Koolibri 2013 Soovituslik: 1) http://www.welovemath.ee/ 2) Lepmann, L jt Ülesandeid gümnaasiumi matemaatika riigieksamiks 3) Kaldmäe jt. (2018), Gümnaasiumi lai matemaatika, Tõenäosus ja statistika, Avita |