Tartu Tamme Gümnaasium

Ainepass

Ainepass

Ainepass: I kursus: Avaldised ja arvuhulgad

Õppeaasta: 2025/2026
Valdkond: Matemaatika ja infotehnoloogia
Periood: 1
Aine: Lai matemaatika
Nimetus: I kursus: Avaldised ja arvuhulgad
Õpetaja: Nele Mäemuru
Klass: 10IT, 10KU, 10TE
Staatus: Kohustuslik kursus
Osalejate kriteeriumid:

Matemaatikaõppe järjepidevuse tõttu seostatakse pidevalt tulevaste kursuste sisu eelnevatega, seetõttu on üsna tihti vaja kasutada varemõpitud teadmisi ja oskuseid

Maht:

19×70 min

Eesmärgid:

Õpilane kasutab matemaatilist keelt, väljendab oma mõtteid ja lahenduskäike selgelt ja täpselt, koostab ja rakendab sobivaid matemaatilisi mudeleid õpitulemuste omandamiseks.

Õpitulemused:

Õpilane:

1) leiab hulkade ühendi, ühisosa ja antud hulga osahulga;

2) selgitab naturaalarvude hulga N, täisarvude hulga Z, ratsionaalarvude hulga Q, irratsionaalarvude hulga I ja reaalarvude hulga R omadusi ja nende hulkade kuuluvusseoseid, märgib arvteljel reaalarvude piirkondi;

3) esitab arvu juure ratsionaalarvulise astendajaga astmena ja vastupidi;

4) sooritab tehteid astmete ning võrdsete juurijatega juurtega;

5) teisendab lihtsamaid ratsionaal- ja irratsionaalavaldisi (kaks tehet ja sulud);

6) näeb ja lahendab arvutuste ja teisenduste abil lahenduvaid reaalelulisi ja teaduslikke probleeme (sh protsentülesanded). Tõlgendab ja esitleb saadud tulemusi.

Sisu lühikirjeldus (ka iseseisev töö):

Naturaalarvude hulk N, täisarvude hulk Z ja ratsionaalarvude hulk Q. Irratsionaalarvude hulk I. Reaalarvude hulk R. Reaalarvude piirkonnad arvteljel. Arvu absoluutväärtus. Ratsionaalavaldiste lihtsustamine. Arvu n-­es juur. Astme mõiste üldistamine: täisarvulise ja ratsionaalarvulise astendajaga aste. Arvu juure esitamine ratsionaalarvulise astendajaga astmena. Tehted astmetega ning tehete näiteid võrdsete juurijatega juurtega.

Iseseisvad tööd tekivad kursusel jooksvalt (näiteks kodused tööd). Nii õpilane, kes on tunnist puudunud, kui ka õpilane, kes on tunnis kohal olnud, peavad enne järgnevat tundi tegema omale selgeks eelneva tunni materjalid, olenemata sellest, kas seda klassis eraldi rõhutatakse või Stuudiumisse kodutööna kirja pannakse. Vastavat abi ning lisamaterjale võib küsida kaasõpilastelt või õpetajalt nii suuliselt kui ka kirjalikult.

Hindamine:

Kontrolltööde hindamisel lähtutakse järgnevatest hindepiiridest:

5 -> 90-100%,

4 -> 75-89%,

3 -> 50-74%,

2 -> 20-49%,

1 -> 0-19% (sh tegemata töö).

Hindepiirid võivad mõnel tööl olla madalamad, kuid neid kindlasti ei tõsteta. Olümpiaadist või muust ainealastest võistlustest osavõtmisel võib õpetaja õpilase vabastada kontrolltöö tegemisest ja hinnata tööd hindega „5“.

Jooksvate töödena võib hinnata tunnikontrolle, koduseid töid või muid õppeülesandeid hindeliselt (5, 4, 3, 2, 1) või arvestuslikult (arvestatud A ja mittearvestatud MA). Jooksvate tööde hindepiirid võivad erineda kontrolltöö hindepiiridest.

Lõpptulemuse kujunemine (ka kooliastme hinne):

Kursuse jooksul on kaks kirjalikku kontrolltööd (a’ 45-70 min), esimene kaaluga 0,45 lõpphindest ja teine kaaluga 0,55. Mõlemad kontrolltööd peavad olema sooritatud vähemalt hindele 3. Kui eelnev tingimus on täitmata, on kursuse lõpphinne 2 või 1 (kui töö on sooritamata). Jooksvate tööde hinded ei mõjuta lõpptulemuste kujunemist!

Kui õpilane jääb töö kirjutamisel vahele kõrvalise abi kasutamisega, siis hinnatakse tööd hindega 1, see töö järelevastamisele ei kuulu, see omakorda tähendab, et kursuse lõpphinne on 1.

NB! Stuudiumi arvutatud keskmine hinne on aritmeetiline keskmine kõigist sisestatud hinnetest ning lõpphinde kujunemisel ei lähtuta sellest vaid ainepassist!

Kooliastme hinne kujuneb kõigi kohustuslike matemaatika kursuste hinnete aritmeetilise keskmise alusel.

Võlgnevuste likvideerimise võimalused:

Jooksvaid töid järele teha ei saa.

Järeltööd on võimalik teha kontrolltööle, mis on kas tegemata või sooritatud hindele 1 või 2, kahe nädala jooksul pärast hinde Stuudiumisse sisestamist (Stuudiumis fikseeritakse kuupäev). 

Järeltööd ei ole võimalik teha sellisele tööle, mille puhul õpilane jäi vahele kõrvalise abi kasutamisega.

Järeltööd saab teha üldise järelvastamise ajal, registreerumisega Stuudiumis. Mõjuval põhjusel ja eelneval kokkuleppel on töö ajal puudumise korral võimalik teha eelnevale erandeid (näiteks sooritada töö enne määratud aega). Kui õpilane paneb end kirja järelevastamisele ja kohale ei saa mõjuval põhjusel tulla, siis tuleb sellest teavitada aineõpetajat ja järelevastamise õpetajat Tiiu Läänistet: tiiu.laaniste@tammegymnaasium.ee. Kui õpilane ei teavita puudumisest, siis enam uuesti sama tööd vastata ei saa! 

NB! Selleks, et saada luba järeltööle registreeruda, tuleb õpetajale Stuudiumis fikseeritud kuupäevaks esitada korrektne vigade parandus koos analüüsiga vastavalt järgnevale juhendile: https://goo.gl/XZRHgJ

Kui õpilane saab mitterahuldava kursuse hinde, siis arutatakse lisavõimaluse andmist õppenõukogus. Selleks peab õpilane esitama õppejuhile vastava sooviavalduse. Kui soov rahuldatakse, siis õpilane saab sooritada kursuse arvestustöö, mille maht on terve kursus ja seda saab sooritada uue perioodi alguses järelvastamise ajal.

Õppematerjalid:

Kohustuslik:

1) Lepmann, L jt , Matemaatika X klassile, Koolibri 2013

Soovituslik:

1) http://www.welovemath.ee/

2) Kaldmäe, K jt Gümnaasiumi lai matemaatika I, Avita 2017

3) Lepmann, L jt Ülesandeid gümnaasiumi matemaatika riigieksamiks valmistumisel, Koolibri 2015.

Tagasivaade orkestri tegemistele

Tagasivaade rahvatantsijate tegemistele

Tagasivaade segakoori tegemistele