Ainepass: XI kursus: Integraal. Planimeetria
Õppeaasta: | 2025/2026 |
Valdkond: | Matemaatika ja infotehnoloogia |
Periood: | 1 |
Aine: | Lai matemaatika |
Nimetus: | XI kursus: Integraal. Planimeetria |
Õpetaja: | Nele Mäemuru |
Klass: | 12KU, 12LO |
Staatus: | Kohustuslik kursus |
Osalejate kriteeriumid: | Matemaatikaõppe järjepidevuse tõttu seostatakse pidevalt tulevaste kursuste sisu eelnevatega, seetõttu on üsna tihti vaja kasutada varemõpitud teadmisi ja oskuseid. |
Maht: | 19×70 min |
Eesmärgid: | Õpilane kasutab matemaatilist keelt, väljendab oma mõtteid ja lahenduskäike selgelt ja täpselt, koostab ja rakendab sobivaid matemaatilisi mudeleid õpitulemuste omandamiseks. |
Õpitulemused: | Õpilane: 1) selgitab algfunktsiooni mõistet ning leiab lihtsamate funktsioonide määramata integraale põhiintegraalide tabeli ja integraali omaduste järgi; 2) selgitab kõvertrapetsi mõistet ning rakendab määratud integraali leides Newtoni-Leibnizi valemit; 3) arvutab määratud integraali abil kõvertrapetsi pindala, mitmest osast koosneva pinnatüki ja kahe kõveraga piiratud pinnatüki pindala ning lihtsama pöördkeha ruumala; 4) selgitab geomeetriliste kujundite ja nende elementide omadusi, kujutab vastavaid kujundeid joonisel; uurib IKT vahendite abil geomeetriliste kujundite omadusi ning kujutab vastavaid kujundeid joonisel; 5) lahendab planimeetria arvutusülesandeid ja lihtsamaid tõestusülesandeid; 6) tunneb ära ainealased ja reaalelulised probleemid, mis on lahendatavad tasandigeomeetrias õpitud kujundite omadustega. Tõlgib need matemaatika keelde, lahendab matemaatiliselt ning tõlgendab ja esitleb saadud tulemusi. |
Sisu lühikirjeldus (ka iseseisev töö): | Algfunktsiooni ja määramata integraali mõiste. Integraali omadused. Kõvertrapets, selle pindala piirväärtusena. Määratud integraal, NewtoniLeibnizi valem. Integraali kasutamine tasandilise kujundi pindala, pöördkeha ruumala ning töö arvutamisel. Kolmnurk, selle sise ja välisnurk, kolmnurga sisenurga poolitaja, selle omadus. Kolmnurga sise ja ümberringjoon. Kolmnurga mediaan, mediaanide omadus. Kolmnurga kesklõik, selle omadus. Meetrilised seosed täisnurkses kolmnurgas. Hulknurk, selle liigid. Kumera hulknurga sisenurkade summa. Hulknurkade sarnasus. Sarnaste hulknurkade ümbermõõtude suhe ja pindalade suhe. Hulknurga sise ja ümberringjoon. Rööpkülik, selle eriliigid ja omadused. Trapets, selle liigid. Trapetsi kesklõik, selle omadused. Kesknurk ja piirdenurk. Thalese teoreem. Ringjoone lõikaja ning puutuja. Kõõl ja puutujahulknurk. Kolmnurga pindala. Rakenduslikud geomeetriaülesanded. Iseseisvad tööd tekivad kursusel jooksvalt (näiteks kodused tööd). Nii õpilane, kes on tunnist puudunud, kui ka õpilane, kes on tunnis kohal olnud, peavad enne järgnevat tundi tegema omale selgeks eelneva tunni materjalid, olenemata sellest, kas seda klassis eraldi rõhutatakse või Stuudiumisse kodutööna kirja pannakse. Vastavat abi ning lisamaterjale võib küsida kaasõpilastelt või õpetajalt nii suuliselt kui ka kirjalikult. |
Hindamine: | Kontrolltööde hindamisel lähtutakse järgnevatest hindepiiridest: 5 -> 90-100%, 4 -> 75-89%, 3 -> 50-74%, 2 -> 20-49%, 1 -> 0-19% (sh tegemata töö). Hindepiirid võivad mõnel tööl olla madalamad, kuid neid kindlasti ei tõsteta. Olümpiaadist või muust ainealastest võistlustest osavõtmisel võib õpetaja õpilase vabastada kontrolltöö tegemisest ja hinnata tööd hindega „5“. Jooksvate töödena võib hinnata tunnikontrolle, koduseid töid või muid õppeülesandeid hindeliselt (5, 4, 3, 2, 1) või arvestuslikult (arvestatud A ja mittearvestatud MA). Jooksvate tööde hindepiirid võivad erineda kontrolltöö hindepiiridest. |
Lõpptulemuse kujunemine (ka kooliastme hinne): | Kursuse jooksul on kaks kirjalikku kontrolltööd (a’ 45-70 min), esimene kaaluga 0,45 lõpphindest ja teine kaaluga 0,55. Mõlemad kontrolltööd peavad olema sooritatud vähemalt hindele 3. Kui eelnev tingimus on täitmata, on kursuse lõpphinne 2 või 1 (kui töö on sooritamata). Jooksvate tööde hinded ei mõjuta lõpptulemuste kujunemist! Kui õpilane jääb töö kirjutamisel vahele kõrvalise abi kasutamisega, siis hinnatakse tööd hindega 1, see töö järelevastamisele ei kuulu, see omakorda tähendab, et kursuse lõpphinne on 1. NB! Stuudiumi arvutatud keskmine hinne on aritmeetiline keskmine kõigist sisestatud hinnetest ning lõpphinde kujunemisel ei lähtuta sellest vaid ainepassist! Kooliastme hinne kujuneb kõigi kohustuslike matemaatika kursuste hinnete aritmeetilise keskmise alusel. |
Võlgnevuste likvideerimise võimalused: | Jooksvaid töid järele teha ei saa. Järeltööd on võimalik teha kontrolltööle, mis on kas tegemata või sooritatud hindele 1 või 2, kahe nädala jooksul pärast hinde Stuudiumisse sisestamist (Stuudiumis fikseeritakse kuupäev). Järeltööd ei ole võimalik teha sellisele tööle, mille puhul õpilane jäi vahele kõrvalise abi kasutamisega. Järeltööd saab teha üldise järelvastamise ajal, registreerumisega Stuudiumis. Mõjuval põhjusel ja eelneval kokkuleppel on töö ajal puudumise korral võimalik teha eelnevale erandeid (näiteks sooritada töö enne määratud aega). Kui õpilane paneb end kirja järelevastamisele ja kohale ei saa mõjuval põhjusel tulla, siis tuleb sellest teavitada aineõpetajat ja järelevastamise õpetajat Tiiu Läänistet: tiiu.laaniste@tammegymnaasium.ee. Kui õpilane ei teavita puudumisest, siis enam uuesti sama tööd vastata ei saa! NB! Selleks, et saada luba järeltööle registreeruda, tuleb õpetajale Stuudiumis fikseeritud kuupäevaks esitada korrektne vigade parandus koos analüüsiga vastavalt järgnevale juhendile: https://goo.gl/XZRHgJ Kui õpilane saab mitterahuldava kursuse hinde, siis arutatakse lisavõimaluse andmist õppenõukogus. Selleks peab õpilane esitama õppejuhile vastava sooviavalduse. Kui soov rahuldatakse, siis õpilane saab sooritada kursuse arvestustöö, mille maht on terve kursus ja seda saab sooritada uue perioodi alguses järelvastamise ajal. |
Õppematerjalid: | Kohustuslik: 1) Lepmann, L jt Matemaatika XII klassile, Koolibri 2013 Soovituslik: 1) http://www.welovemath.ee/ 2) Lepmann, L jt Ülesandeid gümnaasiumi matemaatika riigieksamiks 3) Kaldmäe jt. (2019), Gümnaasiumi lai matemaatika V, Integraal. Planimeetria kordamine. Sirge ja tasand ruumis, Avita |